5. Solve $x^3 - 9x + 1 = 0$ for the root lying between 2 and 4 by Regula-Falsi method.

Section-C

(Long Answer Type Questions)

Note: Attempt any one question. Each question carries 15 marks. $[15 \times 1=15]$

- 6. Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ with y=1 for x=0. Find y approximately for x=-1 by Euler's method (five steps).
- 7. Solve the following system by Gauss-Seidel method: 10x+2y+z=9 2x+20y-2z=-44 -2x+3y+10z=22
- 8. Use Runge-Kutta method to solve $\frac{dy}{dx} = xy$ for x = 1.4 initially x = 1, y = 2 (take h = .2).
- 9. Use Picard's method up to second approximation, solve $\frac{dy}{dx} = 1 + xy$ with $x_0 = 2$, $y_0 = 0$.

	-XX
--	-----

BCA-5004/4240 (4)

Total No. of Questions: 9]

[Total No. of Printed Pages: 4

BCA-5004

BCA (Semester-V) (NEP) Examination, 2024-25

(Major)

NUMERICAL METHODS

Time: 2 Hours

[Maximum Marks: 75

- Note: 1. This paper consists of three sections A, B and C. Attempt questions from all sections as directed.
 - The candidates are required to answer in serial order only. If there are many parts of a question, answer them in continuation.
 - 3. "B" Copy will not be provided.

Section-A

(Short Answer Type Questions)

Note: All questions of this section are compulsory. Each question carries 5 marks. [9×5=45]

BCA-5004/4240

(1)

Turn Over

- 1. (a) Obtain the function whose first forward difference is $9x^2 + 11x + 5$.
 - (b) Using Lagrange's interpolation formula, find f(u) from the following table:

1	x	0	1	2	5
	f(x)	2	5	7	8

(c) Obtain the estimate of the missing figure in the following table:

x	0	1	2	3	4	5	6
f(x)	1	2	-	8	16		64

- (d) Find the third divided difference f(3,4,5,6) where $f(x) = x^3 x$.
- (e) Find the relation between D and E.
- (f) Find the value of the integral by Simpson's $\frac{1}{3}$ rd rule.

$$\int_{-3}^{3} x^4 dx$$

(g) Write the steps for Gauss Elimination method.

(2)

- (h) Explain in brief about bisection method.
- (i) Solve it by using trapezoidal rule $\int_0^1 \frac{dx}{1+x}$.

Section-B

(Long Answer Type Questions)

Note: Attempt any one question. Each question carries 15 marks. $[15 \times 1=15]$

- 2. Derive equation for Newton-Raphson method and discuss its convergence.
- 3. In an examination the number of students who scored marks between certain limits are as follows:

Marks	No. of Students		
0-19	41		
20-39	62		
40-59	65		
60-79	50		
80-99	17		

Estimate the number of candidates getting marks less than 70.

4. Find the first and second derivatives of the function tabulated below at the point x = 1.1:

x	1	1.2	1.4	1.6	1.8	2.0
f(x)	0	0.128	0.544	1.296	2.432	4.00